ar X iv : 0 71 0 . 18 02 v 2 [ qu an t - ph ] 1 2 N ov 2 00 7 A complex periodic QES potential and exceptional points

نویسنده

  • R Roychoudhury
چکیده

We show that the complex PT -symmetric periodic potential V (x) = −(iξ sin 2x+ N)2, where ξ is real and N is a positive integer, is quasi-exactly solvable. For odd values of N ≥ 3, it may lead to exceptional points depending upon the strength of the coupling parameter ξ. The corresponding Schrödinger equation is also shown to go over to the Mathieu equation asymptotically. The limiting value of the exceptional points derived in our scheme is consistent with known branch-point singularities of Mathieu equation. Short title: Complex periodic QES potential

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 71 0 . 34 25 v 2 [ qu an t - ph ] 1 4 N ov 2 00 7 Properties of the residual entanglement for n - qubits 1

X iv :0 71 0. 34 25 v2 [ qu an tph ] 1 4 N ov 2 00 7 Properties of the residual entanglement for n-qubits Dafa Li, Xiangrong Li, Hongtao Huang, Xinxin Li a Dept of mathematical sciences, Tsinghua University, Beijing 100084 CHINA b Department of Mathematics, University of California, Irvine, CA 92697-3875, USA c Electrical Engineering and Computer Science Department University of Michigan, Ann A...

متن کامل

ar X iv : 0 71 1 . 35 78 v 1 [ qu an t - ph ] 2 2 N ov 2 00 7 A formula for the spectral projection of the time operator

In this paper, we study the one-level Friedrichs model with using the quantum time super-operator that predicts the excited state decay inside the continuum. Its survival probability in long time limit is an algebraically decreasing function and an exponentially decreasing multiplied by the oscillating functions.

متن کامل

ar X iv : 0 71 1 . 32 82 v 1 [ he p - ph ] 2 1 N ov 2 00 7 Study of Pure Annihilation Decays B d , s → D 0 D 0

With heavy quark limit and hierarchy approximation λ QCD ≪ m D ≪ m B , we analyze the

متن کامل

O ct 2 00 7 A complex periodic QES potential and exceptional points

We show that the complex PT -symmetric periodic potential V (x) = −(iξ sin 2x+ N)2, where ξ is real and N is a positive integer, is quasi-exactly solvable. For odd values of N ≥ 3, it may lead to exceptional points depending upon the strength of the coupling parameter ξ. The corresponding Schrödinger equation is also shown to go over to the Mathieu equation asymptotically. The limiting value of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009